Statistical Identification of Synchronous Spiking

نویسندگان

  • Matthew T. Harrison
  • Asohan Amarasingham
  • Robert E. Kass
چکیده

4 Models for coarse temporal dependence 10 4.1 Cross-correlation histogram (CCH) . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Statistical hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Independent homogeneous Poisson process (HPP) model . . . . . . . . . . . . . 13 4.3.1 Bootstrap approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3.2 Monte Carlo approximation . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.3 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.4 Acceptance bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.5 Conditional inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3.6 Uniform model and conditional modeling . . . . . . . . . . . . . . . . . . 16 4.3.7 Model-based correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Identical trials models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4.1 Joint peri-stimulus time histogram (JPSTH) . . . . . . . . . . . . . . . . 18 4.4.2 Independent inhomogeneous Poisson process (IPP) model . . . . . . . . . 18 4.4.3 Exchangeable model and trial shuffling . . . . . . . . . . . . . . . . . . . 20 4.4.4 Trial-to-trial variability (TTV) models . . . . . . . . . . . . . . . . . . . 22 4.5 Temporal smoothness models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5.1 Independent inhomogeneous slowly-varying Poisson model . . . . . . . . 24 4.5.2 ∆-uniform model and jitter . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.5.3 Heuristic spike resampling methods . . . . . . . . . . . . . . . . . . . . . 27 4.6 Generalized regression models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.7 Multiple spike trains and more general precise spike timing . . . . . . . . . . . . 30 4.8 Comparisons across conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase synchronization in noise-driven bursting neurons.

The generation and synchronization of bursts are studied in intrinsically spiking neurons due to stimulation with random intracellular calcium fluctuations. It is demonstrated that sufficiently strong noise could induce qualitative change in the firing patterns of a single neuron from periodic spiking to bursting modes. The dynamical mechanism of noise-induced bursting is presented based on a g...

متن کامل

High-order events in cortical networks: a lower bound.

It is commonly believed that information processing in cortical networks involves the collective spiking activity of neuronal assemblies. Nevertheless, due to current technical limitations in multielectrodes recording methods, it is not possible to tackle this issue with direct experimental measurements. In this study we simulate spiking activity of large ensembles of cells focusing on the temp...

متن کامل

The thermodynamic temperature of a rhythmic spiking network

Artificial neural networks built from two-state neurons are powerful computational substrates, whose computational ability is well understood by analogy with statistical mechanics. In this work, we introduce similar analogies in the context of spiking neurons in a fixed time window, where excitatory and inhibitory inputs drawn from a Poisson distribution play the role of temperature. For single...

متن کامل

Master-Slave Synchronization of Pulse-Coupled Chaotic Spiking Oscillators

Abstract This paper studies basic dynamics of a chaotic spiking oscillator and its master-slave type pulse-coupled system. The slaves can exhibit synchronous phenomena for the chaotic spike-trains of the masters not depending on the initial states. Using the mapping procedure, we analyze the synchronous phenomena. Constructing a simple test circuit, we verify typical phenomena in the laboratory.

متن کامل

Neocortical Fast-Spiking interneurons: model, dynamical behaviour and synchronization properties

Neocortical inhibitory Fast-Spiking interneurons are interconnected by electrical synapses (gap-junctions) and control the spike discharge of pyramidal neurons. In this report, by using a biophysical model of a Fast-Spiking interneuron, the synchronization properties of a population of coupled model cells are investigated. In the case the cells interact only by inhibitory synapses, well defined...

متن کامل

Spiking Neurons by Sparse Temporal Coding and Multilayer Rbf Networks

We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multi-layer network can induce h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012